

Leptonic asymmetry in tt production at CDF

Stefano Camarda¹

LHCP 2013 May 11-18, 2013 Barcelona

On behalf of the CDF Collaboration

Motivation

Tevatron experiments report ~2 σ excess on $t\bar{t}$ $A_{_{FR}}$

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

CDF 16.4 ± 4.5 % (6.6% POWHEG + EW) D0 19.6 ± 6.5 % (5.0% MC@NLO)

Probe of beyond SM physics

A_{FB} induces
 Leptonic asymmetry

$$A_{\text{FB}}^{lep} = \frac{N(qy_l > 0) - N(qy_l < 0)}{N(qy_l > 0) + N(qy_l < 0)}$$

- Depends only on lepton's charge and direction → very precise measurement
- Provide complementary information to A_{FB}

Previous results from D0

Channel	A ^{lep} FB		L
Lepton +jets	15.2 ± 3.4	Arxiv:1110.2062	5.4 fb ⁻¹
Dilepton	$5.3 \pm 7.9 \pm 2.9$	Arxiv:1207.0364	5.4 fb ⁻¹
combined	11.8 ± 3.2	Arxiv:1207.0364	5.4 fb ⁻¹

Call for precise measurements with the full Tevatron dataset

$$A_{\text{FB}}^{lep} = \frac{N(qy_l > 0) - N(qy_l < 0)}{N(qy_l > 0) + N(qy_l < 0)}$$

Sources of leptonic asymmetry

tt asymmetry

top polarization

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

0 at LO(a_s²) QCD

~7% at NLO(a_s³) QCD

HO corrections EW, PMC 9%-12%

$$P = \frac{N(t_R \bar{t}_R) - N(t_L \bar{t}_L)}{N(t_R \bar{t}_R) + N(t_L \bar{t}_L)}$$
0 in the SM

P < 0 → negative contribution to

A^{lep}
FB

BSM

Leptonic asymmetry A^{lep} in reference models

CDF	Run	II	Preliminary	ľ	$\mathcal{L} =$	9.4/	fb
-----	-----	----	-------------	---	-----------------	------	----

Model	$A_{ m FB}^{\Delta y}$	$A_{ m FB}^{lep}$	Polarization	
ALPGEN	-0.000(1)	+0.003(1)	+0.009(2)	LO Standard Model
POWHEG	+0.052(0)	+0.024(0)	+0.001(1)	NLO Standard Model
Octet A	+0.156(1)	+0.070(2)	-0.005(3)	LO unpolarized axigluon
Octet L	+0.121(1)	-0.062(1)	-0.290(3)	LO left-handed axigluon
Octet R	+0.114(2)	+0.149(2)	+0.280(3)	LO right-handed axigluon

		(-)
ALPGEN	LO+PS	No asymmetry
POWHEG	NLO+PS	2.4% A ^{lep} _{FB}
Octet A	Unpolarized axigluon (2.0 TeV/c², narrow)	7% A ^{lep} _{FB}
Octet L	Left polarized axigluon (200 GeV/ c^2 , Γ =50 GeV/ c^2)	reduced A ^{lep} _{FB}
Octet R	Right polarized axigluon (200 GeV/ c^2 , Γ =50 GeV/ c^2)	enhanced A ^{lep} _{FB}

BSM reference models

SM higher order corrections

Soft gluon resummation	Small effect	arXiv:1106.6051
EW corrections	25% enhancement	arXiv:1205.6580
NLO scale variation	30% uncertainty	ArXiv:1204.1513
PMC scale setting	40% enhancement	arXiv:1205.1232
NNLO QCD	Not yet known	

LHCP 2013 Stefano Camarda 4

Tevatron Run II

Full Tevatron Run II dataset 12 fb⁻¹ delivered – 10 fb⁻¹ for analysis

- pp collisions at $\sqrt{s} = 1.96$ TeV
- Peak instantaneous luminosity
 4 x 10³² cm⁻² s⁻¹
- 10 years of data acquisition, end of operation in September 2011

Collider Run II Integrated Luminosity

Measurement of leptonic asymmetry A ep with CDF

- Lepton + jets Event selection
- Background subtraction

 $L = 9.4 \text{ fb}^{-1}$

- Acceptance corrections and extrapolation
- Systematic uncertainties

Event selection

- Exactly 1 electron or muon with $p_{\tau} > 20 \text{ GeV/c}$
- Missing E_T > 20 GeV
- 3 jets with $E_{_{\rm T}}$ > 20 GeV
- At least 1 jet with $E_{\tau} > 12 \text{ GeV}$
- At least 1 b-jet
- $H_T = \sum_{l,jets} E_T + E_T^{miss} > 220 \text{ GeV}$

Main background is W + jets

~70% Signal events

CDF Run II Preliminary $\int \mathcal{L} = 9.4/fb$

Process	Prediction		
Non-W	207	\pm	86
W+HF	481	\pm	178
W+LF	201	\pm	72
Single Top	67	\pm	6
Diboson	36	\pm	4
Z+jets	34	\pm	5
All Backgrounds	1026	±	210
$tar{t}$ 7.4pb	2750	\pm	426
Total Prediction	3776	士	476
Observed	3864		

Background asymmetry

- W production is asymmetric
 - EW effects
 - Proton-antiproton collision (PDF)
- Check background modeling of A^{lep}_{FB} in background enhanced control region
- Antitag control region → veto b-tag jets
- W+jets background simulated with ALPGEN

Good agreement of A^{lep} in background enhanced control-region

Extrapolation method

N(qy_i) is measured in a limited rapidity range

→ extrapolate to full range

N(qy_i) is decomposed into symmetric and asymmetric components

$$S(qy_l) = \frac{N(qy_l) + N(-qy_l)}{2}$$

$$\mathcal{A}(qy_l) = \frac{N(qy_l) - N(-qy_l)}{N(qy_l) + N(-qy_l)}$$

S(qy_i) is the same in all models

A(qy_i) distinguish different models

Measured $A(qy_i)$ is

- Bin-by-bin unfolded to generator level
- Fitted with $\mathcal{A}(qy_l) = a \tanh \left[\frac{1}{2}qy_l\right]$
- Convoluted with S(qy_I) to extract A^{lep}_{FB}

Extrapolation method - validation

Extrapolation method is validated on each of the reference models

- Apply acceptance correction and extrapolation procedure on simulated samples at detector-level
- Compare extrapolated A^{lep}_{FB} with generator-level A^{lep}_{FB}

Bin-by-bin acceptance corrections evaluated with POWHEG

CDF Run II Preliminary $\int \mathcal{L} = 9.4/fb$

Signal Model	True $A_{\rm FB}^{lep}$	Extrapolated $A_{\rm FB}^{lep}$
ALPGEN	+0.003(1)	-0.004
POWHEG	+0.024(0)	+0.027
Octet A	+0.070(1)	+0.069
Octet L	-0.062(1)	-0.062
Octet R	+0.149(2)	+0.155

The method is very stable across the different models

Systematic uncertainties

Main systematic uncertainties

- Background estimation
- Recoil Modeling impact of p_T^{tt} modeling

The measurement is statistically limited

CDF Run II Preliminary $\int \mathcal{L} = 9.4/fb$				
Source of Uncertainty	Value			
Backgrounds	0.015			
Recoil Modeling	+0.013			
rtecon wodening	-0.000			
Color Reconnection	0.0067			
Parton Showering	0.0027			
PDF	0.0025			
${ m JES}$	0.0022			
IFSR	0.0018			
Total Systematic	+0.021			
Total Systematic	-0.017			
Data Statistics	0.024			
Total Uncertainty	+0.032			
rotar Oncertainty	-0.029			

Results

$$A_{\text{FB}}^{lep} = \frac{N(qy_l > 0) - N(qy_l < 0)}{N(qy_l > 0) + N(qy_l < 0)}$$

CDF data	$0.094 \pm 0.024 ^{+0.022}_{-0.017}$
POWHEG	0.027
QCD + EW	0.038 ± 0.003
SM estimation based on CDF A _{FR}	0.076

Assume $A_{FB} / A^{lep}_{FB} = 2.17$ (POWHEG)

 $\sim 2\sigma$ higher than prediction

CDF Run II Preliminary $\int \mathcal{L} = 9.4/fb$

Sample	$N_{ m events}$	Data	Signal	Fully Extrapolated
Electrons	1788	0.050 ± 0.024	0.050 ± 0.034	$0.062^{+0.052}_{-0.049}$
Muons	2076	0.081 ± 0.022	0.087 ± 0.029	$0.119_{-0.037}^{+0.039}$
Positive	1884	0.099 ± 0.023	0.110 ± 0.031	$\begin{array}{c} 0.125^{+0.042}_{-0.041} \\ 0.063^{+0.045}_{-0.042} \end{array}$
Negative	1980	0.036 ± 0.022	0.034 ± 0.031	$0.063^{+0.045}_{-0.042}$
Inclusive	3864	0.067 ± 0.016	0.070 ± 0.022	$0.094^{+0.033}_{-0.030}$

Consistent A^{lep}_{FB} measurements in e, μ , I^{+} , I^{-} subsamples

Summary and conclusions

- Leptonic asymmetry in tt production has been measured in the lepton + jets final state with the full Tevatron dataset
- Developed specific analysis techniques, extrapolation robust across SM and BSM models
- Measured A^{lep} = $0.094 \pm 0.024^{+0.022}$ _{-0.017}
- ~2σ excess with respect to NLO prediction (including EW corrections)
- Compatible with a SM-like estimation from measured A_{FB}

Work in progress to measure A^{lep} in the dilepton channel

Summary and conclusions

- Leptonic asymmetry in tt production has been measured in the lepton + jets final state with the full Tevatron dataset
- Developed specific analysis techniques, extrapolation robust across SM and BSM models
- Measured A^{lep} = $0.094 \pm 0.024^{+0.022}$ _{-0.017}
- ~2σ excess with respect to NLO prediction (including EW corrections)
- Compatible with a SM-like estimation from measured A_{ER}

Work in progress to measure A^{lep} in the dilepton channel

Thanks for your attention!

BACKUP

CDF Detector

- Tracking system
 - Silicon detectors
 - Drift chambers COT
- 1.4 T Magnetic field
- Calorimeter
 - Electromagnetic calorimeter
 - Hadronic calorimeter
- Muon detectors
 - Wire chambers
 - Scintillators
- 3 Level Trigger System
 - Level 3 → ~ 100 Hz

Decomposition formulas

$$\mathcal{S}(qy_l) = \frac{N(qy_l) + N(-qy_l)}{2}$$

$$\mathcal{A}(qy_l) = \frac{N(qy_l) - N(-qy_l)}{N(qy_l) + N(-qy_l)}$$

$$N(qy_l) = \mathcal{S}(qy_l) \times \begin{cases} 1 + \mathcal{A}(qy_l) & qy_l > 0\\ 1 - \mathcal{A}(qy_l) & qy_l < 0 \end{cases}$$

$$N\left(qy_{l} > 0\right) = \int_{0}^{\infty} dq y_{l} \left[\mathcal{S}\left(qy_{l}\right) \times \left(1 + \mathcal{A}\left(qy_{l}\right)\right)\right]$$
$$N\left(qy_{l} < 0\right) = \int_{0}^{\infty} dq y_{l} \left[\mathcal{S}\left(qy_{l}\right) \times \left(1 - \mathcal{A}\left(qy_{l}\right)\right)\right]$$

$$A_{FB}^{lep} = \frac{N(qy_l > 0) - N(qy_l < 0)}{N(qy_l > 0) + N(qy_l < 0)}$$
$$= \frac{\int_{0}^{\infty} dqy_l \left[\mathcal{A}(qy_l) \times \mathcal{S}(qy_l) \right]}{\int_{0}^{\infty} dqy_l \mathcal{S}(qy_l)}$$